stubnames#

pandas.wide_to_long(df, stubnames, i, j, sep='', suffix='\\d+')[源代码]#

str 或类列表

占位符名称。假定宽格式变量以占位符名称开头。

用作 ID 变量的列。

子观测变量的名称。您希望在长格式中为该后缀命名的名称。

str,默认 “”

Parameters:
dfDataFrame

宽格式 DataFrame。

一个字符,指示宽格式中变量名的分隔符,将从长格式的名称中剥离。例如,如果您的列名是 A-suffix1, A-suffix2,您可以将 sep=’-’ 指定为剥离连字符。suffix : str,默认 ‘\d+’

str,默认 ‘\d+’

isuffix : str,默认 ‘\d+’

捕获所需后缀的正则表达式。’\d+’ 捕获数字后缀。可以通过否定字符类 ‘\D+’ 指定没有数字的后缀。您还可以进一步区分后缀,例如,如果您的宽变量形式为 A-one, B-two,…, 并且您有一个不相关的列 A-rating,您可以通过指定 suffix=’(!?one|two)’ 来忽略最后一个。当所有后缀都是数字时,它们会被转换为 int64/float64。

jstr

一个包含每个占位符名称作为变量的 DataFrame,带有新索引(i, j)。

sep所有额外变量保持不变。这只是在底层使用了 pandas.melt,但为典型情况进行了硬编码,以“正确处理”。

当有多个 ID 列时

从长格式回到宽格式只需对 unstack 进行一些创造性的使用不太使用的列名也会被处理

如果我们有很多列,我们也可以使用正则表达式来查找我们的占位符名称,并将该列表传递给 wide_to_long

Returns:
DataFrame

上面所有的例子中的后缀都是整数。也可以有非整数后缀。

参见

melt

将 DataFrame 从宽格式重塑为长格式,并可选择保留标识符。

pivot

创建电子表格风格的透视表作为 DataFrame。

DataFrame.pivot

不带聚合的透视,可以处理非数值数据。

DataFrame.pivot_table

pivot 的泛化,可以处理单个索引/列对的重复值。

DataFrame.unstack

基于索引值进行透视,而不是基于列。

Notes

{{ header }}

Examples

>>> np.random.seed(123)
>>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
...                    "A1980" : {0 : "d", 1 : "e", 2 : "f"},
...                    "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
...                    "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
...                    "X"     : dict(zip(range(3), np.random.randn(3)))
...                   })
>>> df["id"] = df.index
>>> df
  A1970 A1980  B1970  B1980         X  id
0     a     d    2.5    3.2 -1.085631   0
1     b     e    1.2    1.3  0.997345   1
2     c     f    0.7    0.1  0.282978   2
>>> pd.wide_to_long(df, ["A", "B"], i="id", j="year")
... 
                X  A    B
id year
0  1970 -1.085631  a  2.5
1  1970  0.997345  b  1.2
2  1970  0.282978  c  0.7
0  1980 -1.085631  d  3.2
1  1980  0.997345  e  1.3
2  1980  0.282978  f  0.1

pandas 数组、标量和数据类型

>>> df = pd.DataFrame({
...     'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
...     'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
...     'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
...     'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
... })
>>> df
   famid  birth  ht1  ht2
0      1      1  2.8  3.4
1      1      2  2.9  3.8
2      1      3  2.2  2.9
3      2      1  2.0  3.2
4      2      2  1.8  2.8
5      2      3  1.9  2.4
6      3      1  2.2  3.3
7      3      2  2.3  3.4
8      3      3  2.1  2.9
>>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age')
>>> l
... 
                  ht
famid birth age
1     1     1    2.8
            2    3.4
      2     1    2.9
            2    3.8
      3     1    2.2
            2    2.9
2     1     1    2.0
            2    3.2
      2     1    1.8
            2    2.8
      3     1    1.9
            2    2.4
3     1     1    2.2
            2    3.3
      2     1    2.3
            2    3.4
      3     1    2.1
            2    2.9

对象

>>> w = l.unstack()
>>> w.columns = w.columns.map('{0[0]}{0[1]}'.format)
>>> w.reset_index()
   famid  birth  ht1  ht2
0      1      1  2.8  3.4
1      1      2  2.9  3.8
2      1      3  2.2  2.9
3      2      1  2.0  3.2
4      2      2  1.8  2.8
5      2      3  1.9  2.4
6      3      1  2.2  3.3
7      3      2  2.3  3.4
8      3      3  2.1  2.9

对于大多数数据类型,pandas 使用 NumPy 数组作为 IndexSeriesDataFrame 中包含的具体对象。

>>> np.random.seed(0)
>>> df = pd.DataFrame({'A(weekly)-2010': np.random.rand(3),
...                    'A(weekly)-2011': np.random.rand(3),
...                    'B(weekly)-2010': np.random.rand(3),
...                    'B(weekly)-2011': np.random.rand(3),
...                    'X' : np.random.randint(3, size=3)})
>>> df['id'] = df.index
>>> df 
   A(weekly)-2010  A(weekly)-2011  B(weekly)-2010  B(weekly)-2011  X  id
0        0.548814        0.544883        0.437587        0.383442  0   0
1        0.715189        0.423655        0.891773        0.791725  1   1
2        0.602763        0.645894        0.963663        0.528895  1   2
>>> pd.wide_to_long(df, ['A(weekly)', 'B(weekly)'], i='id',
...                 j='year', sep='-')
... 
         X  A(weekly)  B(weekly)
id year
0  2010  0   0.548814   0.437587
1  2010  1   0.715189   0.891773
2  2010  1   0.602763   0.963663
0  2011  0   0.544883   0.383442
1  2011  1   0.423655   0.791725
2  2011  1   0.645894   0.528895

对于某些数据类型,pandas 扩展了 NumPy 的类型系统。这些类型的字符串别名可以在 dtypes 中找到。

>>> stubnames = sorted(
...     set([match[0] for match in df.columns.str.findall(
...         r'[A-B]\(.*\)').values if match != []])
... )
>>> list(stubnames)
['A(weekly)', 'B(weekly)']

数据种类

>>> df = pd.DataFrame({
...     'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
...     'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
...     'ht_one': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
...     'ht_two': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
... })
>>> df
   famid  birth  ht_one  ht_two
0      1      1     2.8     3.4
1      1      2     2.9     3.8
2      1      3     2.2     2.9
3      2      1     2.0     3.2
4      2      2     1.8     2.8
5      2      3     1.9     2.4
6      3      1     2.2     3.3
7      3      2     2.3     3.4
8      3      3     2.1     2.9
>>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age',
...                     sep='_', suffix=r'\w+')
>>> l
... 
                  ht
famid birth age
1     1     one  2.8
            two  3.4
      2     one  2.9
            two  3.8
      3     one  2.2
            two  2.9
2     1     one  2.0
            two  3.2
      2     one  1.8
            two  2.8
      3     one  1.9
            two  2.4
3     1     one  2.2
            two  3.3
      2     one  2.3
            two  3.4
      3     one  2.1
            two  2.9